Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
2.
Nat Genet ; 56(4): 569-578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548989

RESUMO

Copy number variants (CNVs) are among the largest genetic variants, yet CNVs have not been effectively ascertained in most genetic association studies. Here we ascertained protein-altering CNVs from UK Biobank whole-exome sequencing data (n = 468,570) using haplotype-informed methods capable of detecting subexonic CNVs and variation within segmental duplications. Incorporating CNVs into analyses of rare variants predicted to cause gene loss of function (LOF) identified 100 associations of predicted LOF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 conferred one of the strongest protective effects of gene LOF on hypertension risk (odds ratio = 0.86 (0.82-0.90)). Protein-coding variation in rapidly evolving gene families within segmental duplications-previously invisible to most analysis methods-generated some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.


Assuntos
Variações do Número de Cópias de DNA , Diabetes Mellitus Tipo 2 , Humanos , Variações do Número de Cópias de DNA/genética , Diabetes Mellitus Tipo 2/genética , Fenótipo , Estudos de Associação Genética , Éxons
3.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260461

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron-and-Astrocyte Program (SNAP). In schizophrenia and aging - two conditions that involve declines in cognitive flexibility and plasticity 1,2 - cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.

4.
Cell ; 186(17): 3659-3673.e23, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37527660

RESUMO

Many regions in the human genome vary in length among individuals due to variable numbers of tandem repeats (VNTRs). To assess the phenotypic impact of VNTRs genome-wide, we applied a statistical imputation approach to estimate the lengths of 9,561 autosomal VNTR loci in 418,136 unrelated UK Biobank participants and 838 GTEx participants. Association and statistical fine-mapping analyses identified 58 VNTRs that appeared to influence a complex trait in UK Biobank, 18 of which also appeared to modulate expression or splicing of a nearby gene. Non-coding VNTRs at TMCO1 and EIF3H appeared to generate the largest known contributions of common human genetic variation to risk of glaucoma and colorectal cancer, respectively. Each of these two VNTRs associated with a >2-fold range of risk across individuals. These results reveal a substantial and previously unappreciated role of non-coding VNTRs in human health and gene regulation.


Assuntos
Canais de Cálcio , Neoplasias Colorretais , Fator de Iniciação 3 em Eucariotos , Glaucoma , Repetições Minissatélites , Humanos , Canais de Cálcio/genética , Neoplasias Colorretais/genética , Genoma Humano , Glaucoma/genética , Polimorfismo Genético , Fator de Iniciação 3 em Eucariotos/genética
5.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333244

RESUMO

Structural variants (SVs) comprise the largest genetic variants, altering from 50 base pairs to megabases of DNA. However, SVs have not been effectively ascertained in most genetic association studies, leaving a key gap in our understanding of human complex trait genetics. We ascertained protein-altering SVs from UK Biobank whole-exome sequencing data (n=468,570) using haplotype-informed methods capable of detecting sub-exonic SVs and variation within segmental duplications. Incorporating SVs into analyses of rare variants predicted to cause gene loss-of-function (pLoF) identified 100 associations of pLoF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 appeared to confer one of the strongest protective effects of gene LoF on hypertension risk (OR = 0.86 [0.82-0.90]). Protein-coding variation in rapidly-evolving gene families within segmental duplications-previously invisible to most analysis methods-appeared to generate some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype, and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.

6.
Sci Rep ; 12(1): 12025, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835769

RESUMO

Non-invasive prenatal testing (NIPT) to detect fetal aneuploidy by sequencing the cell-free DNA (cfDNA) in maternal plasma is being broadly adopted. To detect fetal aneuploidies from maternal plasma, where fetal DNA is mixed with far-larger amounts of maternal DNA, NIPT requires a minimum fraction of the circulating cfDNA to be of placental origin, a level which is usually attained beginning at 10 weeks gestational age. We present an approach that leverages the arrangement of alleles along homologous chromosomes-also known as chromosomal phase-to make NIPT analyses more conclusive. We validate our approach with in silico simulations, then re-analyze data from a pregnant mother who, due to a fetal DNA fraction of 3.4%, received an inconclusive aneuploidy determination through NIPT. We find that the presence of a trisomy 18 fetus can be conclusively inferred from the patient's same molecular data when chromosomal phase is incorporated into the analysis. Key to the effectiveness of our approach is the ability of homologous chromosomes to act as natural controls for each other and the ability of chromosomal phase to integrate subtle quantitative signals across very many sequence variants. These results show that chromosomal phase increases the sensitivity of a common laboratory test, an idea that could also advance cfDNA analyses for cancer detection.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Pré-Natal , Aneuploidia , Ácidos Nucleicos Livres/genética , Cromossomos , DNA/genética , Feminino , Feto , Humanos , Placenta , Gravidez , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Trissomia/genética
7.
Cell Stem Cell ; 29(3): 472-486.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176222

RESUMO

Despite their widespread use in research, there has not yet been a systematic genomic analysis of human embryonic stem cell (hESC) lines at a single-nucleotide resolution. We therefore performed whole-genome sequencing (WGS) of 143 hESC lines and annotated their single-nucleotide and structural genetic variants. We found that while a substantial fraction of hESC lines contained large deleterious structural variants, finer-scale structural and single-nucleotide variants (SNVs) that are ascertainable only through WGS analyses were present in hESC genomes and human blood-derived genomes at similar frequencies. Moreover, WGS allowed us to identify SNVs associated with cancer and other diseases that could alter cellular phenotypes and compromise the safety of hESC-derived cellular products transplanted into humans. As a resource to enable reproducible hESC research and safer translation, we provide a user-friendly WGS data portal and a data-driven scheme for cell line maintenance and selection.


Assuntos
Células-Tronco Embrionárias Humanas , Variação Genética , Genoma Humano/genética , Humanos , Nucleotídeos , Sequenciamento Completo do Genoma
9.
Nat Commun ; 12(1): 6746, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799581

RESUMO

DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.


Assuntos
Período de Replicação do DNA , Genoma Humano , Células-Tronco Pluripotentes/metabolismo , Acetilação , Variação Biológica da População/genética , Metilação de DNA , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Código das Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
10.
Science ; 373(6562): 1499-1505, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554798

RESUMO

Many human proteins contain domains that vary in size or copy number because of variable numbers of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 786 phenotypes identified some of the strongest associations of common variants with human phenotypes, including height, hair morphology, and biomarkers of health. Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-coding mutations in the same genes. These results point to cryptic effects of highly polymorphic common structural variants that have eluded molecular analyses to date.


Assuntos
Genoma Humano , Repetições Minissatélites/genética , Fenótipo , Polimorfismo Genético , Agrecanas/genética , Antígenos/genética , População Negra , Estatura/genética , Estudos de Associação Genética , Cabelo , Haplótipos , Humanos , Proteínas de Filamentos Intermediários/genética , Rim/fisiologia , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Mucina-1/genética , Polimorfismo de Nucleotídeo Único , Polinucleotídeo Adenililtransferase/genética , População Branca/genética , Sequenciamento do Exoma
11.
bioRxiv ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501449

RESUMO

Hundreds of the proteins encoded in human genomes contain domains that vary in size or copy number due to variable numbers of tandem repeats (VNTRs) in protein-coding exons. VNTRs have eluded analysis by the molecular methods-SNP arrays and high-throughput sequencing-used in large-scale human genetic studies to date; thus, the relationships of VNTRs to most human phenotypes are unknown. We developed ways to estimate VNTR lengths from whole-exome sequencing data, identify the SNP haplotypes on which VNTR alleles reside, and use imputation to project these haplotypes into abundant SNP data. We analyzed 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 791 phenotypes. Analysis revealed some of the strongest associations of common variants with human phenotypes including height, hair morphology, and biomarkers of human health; for example, a VNTR encoding 13-44 copies of a 19-amino-acid repeat in the chondroitin sulfate domain of aggrecan (ACAN) associated with height variation of 3.4 centimeters (s.e. 0.3 cm). Incorporating large-effect VNTRs into analysis also made it possible to map many additional effects at the same loci: for the blood biomarker lipoprotein(a), for example, analysis of the kringle IV-2 VNTR within the LPA gene revealed that 18 coding SNPs and the VNTR in LPA explained 90% of lipoprotein(a) heritability in Europeans, enabling insights about population differences and epidemiological significance of this clinical biomarker. These results point to strong, cryptic effects of highly polymorphic common structural variants that have largely eluded molecular analyses to date.

12.
Nature ; 582(7813): 577-581, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499649

RESUMO

Many common illnesses, for reasons that have not been identified, differentially affect men and women. For instance, the autoimmune diseases systemic lupus erythematosus (SLE) and Sjögren's syndrome affect nine times more women than men1, whereas schizophrenia affects men with greater frequency and severity relative to women2. All three illnesses have their strongest common genetic associations in the major histocompatibility complex (MHC) locus, an association that in SLE and Sjögren's syndrome has long been thought to arise from alleles of the human leukocyte antigen (HLA) genes at that locus3-6. Here we show that variation of the complement component 4 (C4) genes C4A and C4B, which are also at the MHC locus and have been linked to increased risk for schizophrenia7, generates 7-fold variation in risk for SLE and 16-fold variation in risk for Sjögren's syndrome among individuals with common C4 genotypes, with C4A protecting more strongly than C4B in both illnesses. The same alleles that increase risk for schizophrenia greatly reduce risk for SLE and Sjögren's syndrome. In all three illnesses, C4 alleles act more strongly in men than in women: common combinations of C4A and C4B generated 14-fold variation in risk for SLE, 31-fold variation in risk for Sjögren's syndrome, and 1.7-fold variation in schizophrenia risk among men (versus 6-fold, 15-fold and 1.26-fold variation in risk among women, respectively). At a protein level, both C4 and its effector C3 were present at higher levels in cerebrospinal fluid and plasma8,9 in men than in women among adults aged between 20 and 50 years, corresponding to the ages of differential disease vulnerability. Sex differences in complement protein levels may help to explain the more potent effects of C4 alleles in men, women's greater risk of SLE and Sjögren's syndrome and men's greater vulnerability to schizophrenia. These results implicate the complement system as a source of sexual dimorphism in vulnerability to diverse illnesses.


Assuntos
Complemento C3/genética , Complemento C4/genética , Lúpus Eritematoso Sistêmico/genética , Caracteres Sexuais , Síndrome de Sjogren/genética , Adulto , Alelos , Complemento C3/análise , Complemento C3/líquido cefalorraquidiano , Complemento C4/análise , Complemento C4/líquido cefalorraquidiano , Feminino , Predisposição Genética para Doença , Antígenos HLA/genética , Haplótipos , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/líquido cefalorraquidiano , Complexo Principal de Histocompatibilidade/genética , Masculino , Pessoa de Meia-Idade , Síndrome de Sjogren/sangue , Síndrome de Sjogren/líquido cefalorraquidiano , Adulto Jovem
14.
Nat Commun ; 10(1): 1784, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992455

RESUMO

The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.


Assuntos
Genoma Humano/genética , Variação Estrutural do Genoma , Genômica/métodos , Haplótipos/genética , Algoritmos , Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação INDEL , Sequenciamento Completo do Genoma/métodos
16.
Am J Hum Genet ; 103(6): 930-947, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30503522

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.


Assuntos
Anemia de Diamond-Blackfan/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Exoma/genética , Éxons/genética , Feminino , Deleção de Genes , Estudos de Associação Genética/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Mutação/genética , Fenótipo , Proteínas Ribossômicas/genética , Ribossomos/genética , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodos
18.
Nat Commun ; 9(1): 2606, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973585

RESUMO

Lipoprotein(a), Lp(a), is a modified low-density lipoprotein particle that contains apolipoprotein(a), encoded by LPA, and is a highly heritable, causal risk factor for cardiovascular diseases that varies in concentrations across ancestries. Here, we use deep-coverage whole genome sequencing in 8392 individuals of European and African ancestry to discover and interpret both single-nucleotide variants and copy number (CN) variation associated with Lp(a). We observe that genetic determinants between Europeans and Africans have several unique determinants. The common variant rs12740374 associated with Lp(a) cholesterol is an eQTL for SORT1 and independent of LDL cholesterol. Observed associations of aggregates of rare non-coding variants are largely explained by LPA structural variation, namely the LPA kringle IV 2 (KIV2)-CN. Finally, we find that LPA risk genotypes confer greater relative risk for incident atherosclerotic cardiovascular diseases compared to directly measured Lp(a), and are significantly associated with measures of subclinical atherosclerosis in African Americans.


Assuntos
Doenças Cardiovasculares/genética , Variações do Número de Cópias de DNA , Genoma Humano , Lipoproteína(a)/genética , Polimorfismo de Nucleotídeo Único , Proteínas Adaptadoras de Transporte Vesicular/sangue , Proteínas Adaptadoras de Transporte Vesicular/genética , População Negra , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etnologia , LDL-Colesterol/sangue , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Lipoproteína(a)/sangue , Locos de Características Quantitativas , Fatores de Risco , População Branca , Sequenciamento Completo do Genoma
19.
Nature ; 559(7714): 350-355, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995854

RESUMO

The selective pressures that shape clonal evolution in healthy individuals are largely unknown. Here we investigate 8,342 mosaic chromosomal alterations, from 50 kb to 249 Mb long, that we uncovered in blood-derived DNA from 151,202 UK Biobank participants using phase-based computational techniques (estimated false discovery rate, 6-9%). We found six loci at which inherited variants associated strongly with the acquisition of deletions or loss of heterozygosity in cis. At three such loci (MPL, TM2D3-TARSL2, and FRA10B), we identified a likely causal variant that acted with high penetrance (5-50%). Inherited alleles at one locus appeared to affect the probability of somatic mutation, and at three other loci to be objects of positive or negative clonal selection. Several specific mosaic chromosomal alterations were strongly associated with future haematological malignancies. Our results reveal a multitude of paths towards clonal expansions with a wide range of effects on human health.


Assuntos
Aberrações Cromossômicas , Células Clonais/citologia , Células Clonais/metabolismo , Hematopoese/genética , Mosaicismo , Adulto , Idoso , Alelos , Bancos de Espécimes Biológicos , Quebra Cromossômica , Sítios Frágeis do Cromossomo/genética , Cromossomos Humanos Par 10/genética , Feminino , Saúde , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Penetrância , Reino Unido
20.
Nat Commun ; 9(1): 1929, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769526

RESUMO

Neuromyelitis optica (NMO) is a rare autoimmune disease that affects the optic nerve and spinal cord. Most NMO patients ( > 70%) are seropositive for circulating autoantibodies against aquaporin 4 (NMO-IgG+). Here, we meta-analyze whole-genome sequences from 86 NMO cases and 460 controls with genome-wide SNP array from 129 NMO cases and 784 controls to test for association with SNPs and copy number variation (total N = 215 NMO cases, 1244 controls). We identify two independent signals in the major histocompatibility complex (MHC) region associated with NMO-IgG+, one of which may be explained by structural variation in the complement component 4 genes. Mendelian Randomization analysis reveals a significant causal effect of known systemic lupus erythematosus (SLE), but not multiple sclerosis (MS), risk variants in NMO-IgG+. Our results suggest that genetic variants in the MHC region contribute to the etiology of NMO-IgG+ and that NMO-IgG+ is genetically more similar to SLE than MS.


Assuntos
Predisposição Genética para Doença/genética , Neuromielite Óptica/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Adulto , Aquaporina 4/imunologia , Variações do Número de Cópias de DNA , Feminino , Haplótipos , Humanos , Imunoglobulina G/imunologia , Complexo Principal de Histocompatibilidade/genética , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/imunologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...